organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one

Yaobing Wang, Zhongliang Wang, Tongling Liang, Hongbing Fu and Jiannian Yao*

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China Correspondence e-mail: jnyao@iccas.ac.cn

Received 6 November 2007; accepted 4 December 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 6.4.

The title compound, $C_{25}H_{16}O$, was prepared by the condensation reaction of pyrene-1-carbaldehyde and acetophenone in ethanol solution at room temperature. The phenyl ring forms a dihedral angle of 39.10 (11)° with the pyrene ring system. In the crystal structure, adjacent pyrene ring systems are linked by aromatic π - π stacking interactions, with a perpendicular interplanar distance of 3.267 (6) Å and a centroid–centroid offset of 2.946 (7) Å.

Related literature

For related literature, see: Ansari *et al.* (2005); Nielsen *et al.* (2005); Pattanaik *et al.* (2002); Strack (1997).

Experimental

Crystal data

 $C_{25}H_{16}O$ $V = 833.4 (5) Å^3$
 $M_r = 332.38$ Z = 2

 Monoclinic, P_{2_1} Mo K\alpha radiation

 a = 4.6739 (15) Å $\mu = 0.08 \text{ mm}^{-1}$

 b = 22.535 (7) Å T = 294 (2) K

 c = 8.250 (3) Å $0.24 \times 0.22 \times 0.12 \text{ mm}$
 $\beta = 106.45 (2)^{\circ}$ $0.24 \times 0.22 \times 0.12 \text{ mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) *T*_{min} = 0.981, *T*_{max} = 0.991

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.098$ S = 1.001512 reflections 235 parameters 3489 measured reflections 1512 independent reflections 914 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1990); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (Nos. 90301010, 50573084, 90606004),

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2180).

References

- Ansari, F. L., Nazira, S., Noureenb, H. & Mirzab, B. (2005). *Chem. Biodiversity*, **2**, 1656–1664.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.
- Pattanaik, P., Raman, J. & Balaram, H. (2002). Curr. Top. Med. Chem. 2, 438–496.
- Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Strack, D. (1997). In Plant Biochemistry, p. 387. San Diego: Academic Press.

supplementary materials

Acta Cryst. (2008). E64, o630 [doi:10.1107/S1600536807065476]

1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one

Y. Wang, Z. Wang, T. Liang, H. Fu and J. Yao

Comment

Chalcone derivatives have always been of interest in the field of inorganic, organic and physical chemists and biology (Strack, 1997) due to their importance in many organic synthetic pathways, biochemical processes and enzymatic mechanisms (Ansari *et al.*, 2005; Pattanaik *et al.*, 2002; Nielsen *et al.*, 2005). In this paper, we report the crystal structure of the title compound, which was obtained by the condensation reaction of pyrene-1-carbaldehyde and acetophenone in ethanol solution at room temperature.

In the title compound, the pyrene ring is substantially planar (maximum displacement 0.011 (4) Å for C12) and forms a dihedral angle of 39.10 (11)° with the phenyl ring. In the crystal packing, adjacent pyrene rings are linked by aromatic π - π stacking interactions, with a centroid-centroid distance of 4.339 (7) Å, a perpendicular interplanar distance of 3.267 (6) Å and a centroid-centroid offset of 2.946 (7) Å.

Experimental

The title compound was prepared by the condensation reaction of pyrene-1-carbaldehyde (0.05 mol) and acetophenone (0.05 mol) in ethanol (20 ml) at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by slow evaporation of an ethanol/acetonitrile solution $(1:1 \nu/\nu)$ at room temperature.

Refinement

All H atoms were fixed geometrically and were treated as riding on the parent C atoms, with C—H distances of 0.93 Å. $U_{iso}(H) = 1.2 U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Figures

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one

Crystal data

C₂₅H₁₆O $F_{000} = 348$ $M_r = 332.38$ $D_x = 1.324 \text{ Mg m}^{-3}$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 4.6739 (15) Å b = 22.535 (7) Å c = 8.250 (3) Å $\beta = 106.45$ (2)° V = 833.4 (5) Å³ Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer	1512 independent reflections
Radiation source: fine-focus sealed tube	914 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -5 \rightarrow 5$
$T_{\min} = 0.981, \ T_{\max} = 0.991$	$k = -26 \rightarrow 14$
3489 measured reflections	$l = -9 \rightarrow 9$

Mo Kα radiation

Cell parameters from 824 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 25.7^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 294 (2) K

Block, yellow

 $0.24\times0.22\times0.12~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
1512 reflections	$\Delta \rho_{max} = 0.11 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	1.0978 (8)	0.06540 (14)	0.3854 (4)	0.0865 (10)
C1	0.2634 (8)	0.31864 (18)	0.6348 (5)	0.0474 (10)
C2	0.4014 (8)	0.30397 (17)	0.5070 (5)	0.0456 (10)
C3	0.5149 (8)	0.24553 (17)	0.4986 (5)	0.0437 (9)
C4	0.4779 (8)	0.20312 (18)	0.6221 (5)	0.0532 (11)
H4	0.5470	0.1646	0.6191	0.064*
C5	0.3463 (9)	0.21795 (19)	0.7411 (5)	0.0558 (11)
Н5	0.3277	0.1892	0.8184	0.067*
C6	0.2339 (8)	0.27586 (18)	0.7539 (5)	0.0507 (10)
C7	0.0951 (9)	0.2918 (2)	0.8760 (6)	0.0676 (12)
H7	0.0754	0.2637	0.9547	0.081*
C8	-0.0129 (11)	0.3477 (2)	0.8831 (6)	0.0781 (15)
H8	-0.1058	0.3572	0.9656	0.094*
С9	0.0158 (9)	0.3905 (2)	0.7673 (6)	0.0706 (14)
Н9	-0.0569	0.4286	0.7736	0.085*
C10	0.1518 (9)	0.37699 (19)	0.6421 (5)	0.0561 (11)
C11	0.1810 (9)	0.4196 (2)	0.5191 (6)	0.0657 (13)
H11	0.1079	0.4578	0.5231	0.079*
C12	0.3107 (9)	0.40594 (19)	0.3987 (6)	0.0619 (12)
H12	0.3263	0.4347	0.3208	0.074*
C13	0.4260 (8)	0.34749 (15)	0.3881 (5)	0.0481 (10)
C14	0.5642 (9)	0.33242 (19)	0.2671 (5)	0.0555 (11)
H14	0.5841	0.3610	0.1897	0.067*
C15	0.6733 (9)	0.27656 (17)	0.2572 (5)	0.0542 (11)
H15	0.7622	0.2680	0.1723	0.065*
C16	0.6540 (8)	0.23186 (16)	0.3724 (5)	0.0460 (10)
C17	0.7838 (9)	0.17355 (17)	0.3629 (5)	0.0527 (10)
H17	0.7879	0.1477	0.4513	0.063*
C18	0.8963 (9)	0.15305 (17)	0.2438 (5)	0.0585 (11)
H18	0.8827	0.1765	0.1491	0.070*
C19	1.0416 (9)	0.09496 (19)	0.2545 (6)	0.0561 (11)
C20	1.1212 (8)	0.07115 (16)	0.1054 (5)	0.0486 (9)
C21	1.3317 (9)	0.0265 (2)	0.1272 (5)	0.0617 (11)
H21	1.4290	0.0135	0.2357	0.074*
C22	1.3998 (10)	0.00115 (19)	-0.0091 (7)	0.0751 (14)
H22	1.5397	-0.0293	0.0076	0.090*
C23	1.2618 (11)	0.0207 (2)	-0.1689 (6)	0.0732 (13)
H23	1.3094	0.0040	-0.2611	0.088*
C24	1.0536 (11)	0.0648 (2)	-0.1928 (5)	0.0740 (13)
H24	0.9581	0.0777	-0.3018	0.089*
C25	0.9834 (11)	0.09030 (18)	-0.0569 (5)	0.0632 (13)
H25	0.8426	0.1206	-0.0747	0.076*

Fractional atomic coordinates and isotropic or	\cdot equivalent isotropic displacement parameters (\AA^2)
--	--

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.123 (3)	0.079 (2)	0.0604 (19)	0.027 (2)	0.0325 (18)	0.0182 (18)
C1	0.035 (2)	0.059 (3)	0.043 (2)	-0.0053 (19)	0.0029 (18)	-0.007(2)
C2	0.038 (2)	0.055 (3)	0.042 (2)	-0.0131 (19)	0.0081 (19)	-0.0036 (19)
C3	0.037 (2)	0.054 (3)	0.037 (2)	-0.0056 (19)	0.0062 (18)	0.0029 (19)
C4	0.057 (3)	0.056 (3)	0.048 (2)	-0.004 (2)	0.017 (2)	0.004 (2)
C5	0.056 (3)	0.065 (3)	0.047 (3)	-0.009 (2)	0.015 (2)	0.007 (2)
C6	0.042 (2)	0.068 (3)	0.041 (2)	-0.007 (2)	0.0105 (19)	-0.003 (2)
C7	0.056 (3)	0.093 (4)	0.054 (3)	-0.003 (3)	0.016 (2)	-0.006 (2)
C8	0.068 (3)	0.107 (5)	0.064 (3)	-0.001 (3)	0.026 (3)	-0.018 (3)
C9	0.054 (3)	0.085 (4)	0.069 (3)	0.001 (2)	0.011 (3)	-0.029 (3)
C10	0.045 (2)	0.065 (3)	0.054 (3)	-0.005 (2)	0.008 (2)	-0.016 (2)
C11	0.056 (3)	0.054 (3)	0.078 (3)	0.004 (2)	0.005 (3)	-0.002 (2)
C12	0.060 (3)	0.051 (3)	0.072 (3)	-0.003 (2)	0.014 (3)	0.008 (2)
C13	0.041 (2)	0.051 (3)	0.050 (2)	-0.0058 (19)	0.009 (2)	0.003 (2)
C14	0.061 (3)	0.056 (3)	0.051 (3)	-0.006 (2)	0.019 (2)	0.015 (2)
C15	0.059 (3)	0.061 (3)	0.045 (2)	-0.007 (2)	0.018 (2)	-0.001 (2)
C16	0.047 (2)	0.047 (3)	0.044 (2)	-0.009 (2)	0.012 (2)	0.000 (2)
C17	0.058 (2)	0.055 (3)	0.046 (2)	-0.004 (2)	0.015 (2)	-0.001 (2)
C18	0.077 (3)	0.053 (3)	0.049 (2)	0.004 (2)	0.022 (2)	0.006 (2)
C19	0.058 (3)	0.056 (3)	0.053 (3)	0.000 (2)	0.013 (2)	0.004 (2)
C20	0.057 (2)	0.041 (2)	0.050 (2)	-0.005 (2)	0.0174 (19)	-0.0035 (19)
C21	0.065 (3)	0.057 (2)	0.058 (3)	-0.002 (2)	0.009 (2)	0.001 (2)
C22	0.073 (3)	0.062 (3)	0.091 (4)	0.007 (3)	0.026 (3)	-0.015 (3)
C23	0.082 (4)	0.074 (3)	0.070 (3)	0.000 (3)	0.031 (3)	-0.011 (3)
C24	0.099 (4)	0.069 (3)	0.054 (3)	0.017 (3)	0.023 (3)	0.001 (2)
C25	0.086 (3)	0.052 (3)	0.051 (3)	0.017 (2)	0.020 (3)	0.003 (2)

Geometric parameters (Å, °)

O1—C19	1.232 (5)	C12—H12	0.9300
C1—C6	1.411 (5)	C13—C14	1.377 (5)
C1—C2	1.422 (4)	C14—C15	1.369 (5)
C1—C10	1.422 (6)	C14—H14	0.9300
C2—C13	1.414 (5)	C15—C16	1.405 (5)
C2—C3	1.429 (5)	C15—H15	0.9300
C3—C16	1.409 (5)	C16—C17	1.459 (5)
C3—C4	1.443 (5)	C17—C18	1.322 (5)
C4—C5	1.340 (5)	С17—Н17	0.9300
C4—H4	0.9300	C18—C19	1.466 (5)
C5—C6	1.422 (5)	C18—H18	0.9300
С5—Н5	0.9300	C19—C20	1.483 (5)
C6—C7	1.391 (5)	C20—C25	1.380 (5)
С7—С8	1.364 (6)	C20—C21	1.382 (5)
С7—Н7	0.9300	C21—C22	1.377 (5)
C8—C9	1.390 (6)	C21—H21	0.9300

С8—Н8	0.9300	C22—C23	1.366 (6)
C9—C10	1.392 (5)	C22—H22	0.9300
С9—Н9	0.9300	C23—C24	1.365 (6)
C10—C11	1.431 (6)	С23—Н23	0.9300
C11—C12	1.338 (6)	C24—C25	1.381 (5)
C11—H11	0.9300	C24—H24	0.9300
C12—C13	1.435 (5)	С25—Н25	0.9300
C6—C1—C2	120.8 (3)	C2—C13—C12	119.2 (4)
C6—C1—C10	119.5 (4)	C15—C14—C13	121.9 (4)
C2-C1-C10	119.7 (4)	C15—C14—H14	119.0
C13—C2—C1	119.7 (3)	C13—C14—H14	119.0
C13—C2—C3	120 1 (3)	C14-C15-C16	121.5 (4)
C1 - C2 - C3	120.2(3)	C14—C15—H15	119.2
C16-C3-C2	1195(3)	C16-C15-H15	119.2
$C_{16} - C_{3} - C_{4}$	123 3 (4)	$C_{15} - C_{16} - C_{3}$	118 3 (4)
$C_{2} = C_{3} = C_{4}$	1123.3(1)	$C_{15} = C_{16} = C_{17}$	120.1(3)
$C_{2} = C_{3} = C_{1}$	121 6 (4)	C_{3} C_{16} C_{17}	120.1(3) 1215(3)
$C_{2} = C_{4} = C_{2}$	110.2	$C_{18} - C_{17} - C_{16}$	121.5(3)
$C_3 - C_4 - H_4$	119.2	$C_{18} - C_{17} - H_{17}$	127.9 (4)
$C_1 = C_2 = C_1$	117.2	C16_C17_H17	116.1
$C_4 = C_5 = C_0$	122.0 (4)	$C_{10} - C_{17} - C_{18} - C_{10}$	110.1
C4-C5-H5	110.7	$C_{17} = C_{18} = C_{19}$	122.8 (4)
CoC5II5	110.7	$C_{1}^{-1} = C_{18}^{-18} = H_{18}^{-18}$	118.0
C/-C0-C1	119.0(4)	C19 - C18 - H18	118.0
C = C = C	125.5 (4)	01 - 019 - 018	121.1 (4)
	11/./(3)	01 - 019 - 020	119.3 (4)
C8	121.6 (5)	C18 - C19 - C20	119.6 (4)
C8—C7—H7	119.2	$C_{25} = C_{20} = C_{21}$	118.2 (3)
C6—C/—H/	119.2	C25—C20—C19	122.3 (3)
C7—C8—C9	120.1 (4)	C21—C20—C19	119.5 (4)
С7—С8—Н8	119.9	C22—C21—C20	121.1 (4)
С9—С8—Н8	119.9	C22—C21—H21	119.4
C8—C9—C10	120.8 (4)	C20—C21—H21	119.4
С8—С9—Н9	119.6	C23—C22—C21	119.9 (4)
С10—С9—Н9	119.6	C23—C22—H22	120.0
C9-C10-C1	118.9 (4)	C21—C22—H22	120.0
C9—C10—C11	122.4 (4)	C24—C23—C22	119.7 (4)
C1—C10—C11	118.7 (4)	С24—С23—Н23	120.1
C12—C11—C10	121.7 (4)	С22—С23—Н23	120.1
C12-C11-H11	119.1	C23—C24—C25	120.6 (4)
C10—C11—H11	119.1	C23—C24—H24	119.7
C11—C12—C13	120.9 (4)	C25—C24—H24	119.7
C11—C12—H12	119.6	C20—C25—C24	120.3 (4)
C13—C12—H12	119.6	С20—С25—Н25	119.8
C14—C13—C2	118.6 (4)	C24—C25—H25	119.8
C14—C13—C12	122.1 (4)		
C6—C1—C2—C13	179.5 (4)	C3—C2—C13—C14	-0.9 (5)
C10-C1-C2-C13	-0.1 (5)	C1—C2—C13—C12	0.0 (5)
C6—C1—C2—C3	-0.6 (5)	C3—C2—C13—C12	-180.0 (3)

supplementary materials

C10-C1-C2-C3	179.9 (4)	C11—C12—C13—C14	-179.1 (4)
C13—C2—C3—C16	0.7 (5)	C11—C12—C13—C2	0.0 (6)
C1—C2—C3—C16	-179.3 (3)	C2-C13-C14-C15	1.0 (6)
C13—C2—C3—C4	-179.0 (4)	C12—C13—C14—C15	-179.8 (4)
C1—C2—C3—C4	1.0 (4)	C13-C14-C15-C16	-1.1 (6)
C16—C3—C4—C5	179.5 (3)	C14—C15—C16—C3	0.8 (6)
C2—C3—C4—C5	-0.8 (5)	C14-C15-C16-C17	-177.4 (4)
C3—C4—C5—C6	0.2 (6)	C2-C3-C16-C15	-0.7 (5)
C2-C1-C6-C7	-179.4 (3)	C4—C3—C16—C15	179.0 (3)
C10-C1-C6-C7	0.1 (5)	C2-C3-C16-C17	177.5 (3)
C2-C1-C6-C5	-0.1 (5)	C4—C3—C16—C17	-2.8 (6)
C10-C1-C6-C5	179.5 (3)	C15-C16-C17-C18	-8.4 (6)
C4—C5—C6—C7	179.6 (4)	C3-C16-C17-C18	173.5 (4)
C4—C5—C6—C1	0.3 (6)	C16—C17—C18—C19	175.2 (4)
C1—C6—C7—C8	0.0 (6)	C17—C18—C19—O1	-8.9 (6)
C5—C6—C7—C8	-179.3 (4)	C17—C18—C19—C20	170.8 (4)
C6—C7—C8—C9	-0.4 (7)	O1-C19-C20-C25	157.8 (4)
C7—C8—C9—C10	0.6 (7)	C18—C19—C20—C25	-21.9 (6)
C8—C9—C10—C1	-0.4 (6)	O1-C19-C20-C21	-19.5 (6)
C8—C9—C10—C11	179.0 (4)	C18—C19—C20—C21	160.8 (4)
C6—C1—C10—C9	0.1 (5)	C25—C20—C21—C22	-0.9 (6)
C2-C1-C10-C9	179.6 (3)	C19—C20—C21—C22	176.5 (4)
C6-C1-C10-C11	-179.4 (3)	C20—C21—C22—C23	1.1 (7)
C2-C1-C10-C11	0.2 (5)	C21—C22—C23—C24	-0.9 (7)
C9—C10—C11—C12	-179.6 (4)	C22—C23—C24—C25	0.7 (7)
C1-C10-C11-C12	-0.2 (6)	C21—C20—C25—C24	0.7 (6)
C10-C11-C12-C13	0.1 (6)	C19—C20—C25—C24	-176.7 (4)
C1—C2—C13—C14	179.1 (3)	C23—C24—C25—C20	-0.6 (7)

Fig. 1

